Nonlinear Eigenvalue Problems and Bifurcation for Quasi-Linear Elliptic Operators

نویسندگان

چکیده

Abstract In this paper, we analyze an eigenvalue problem for quasi-linear elliptic operators involving homogeneous Dirichlet boundary conditions in a open smooth bounded domain. We show that the eigenfunctions corresponding to eigenvalues belong $$L^{\infty }$$ L ∞ , which implies $$C^{1,\alpha C 1 , α smoothness, and first is simple. Moreover, investigate bifurcation results from trivial solutions using Krasnoselski theorem infinity Leray–Schauder degree. also existence of multiple critical points variational methods genus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems

This paper is concerned with the nonlinear multiparameter elliptic eigenvalue problem u′′(r) + N − 1 r u′(r) + μu(r)− k ∑ i=1 λifi(u(r)) = 0, 0 < r < 1, u(r) > 0, 0 ≤ r < 1, u′(0) = 0, u(1) = 0, where N ≥ 1, k ∈ N and μ, λi ≥ 0 (1 ≤ i ≤ k) are parameters. The aim of this paper is to study the asymptotic properties of eigencurve μ(λ, α) = μ(λ1, λ2, · · · , λk, α) with emphasis on the phenomenon ...

متن کامل

Variational Methods for Nonlinear Elliptic Eigenvalue Problems

In the present note, we give a simple general proof for the existence of solutions of the following two types of variational problems: PROBLEM A. To minimize fa F(x> u, • • • , Du)dx over a subspace VofW>*(tt). PROBLEM B. TO minimize ƒ« F(x, w, • • • , Du)dx for u in V with / a G(x, u, • • • , D^u)dx^c. The solution of the first problem yields a weak solution of a corresponding elliptic boundar...

متن کامل

Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations

In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...

متن کامل

Global bifurcation and continua of nonnegative solutions for some nonlinear elliptic eigenvalue type problems

In this note, we study the existence and multiplicity of solutions, strictly positive or nonnegative having a dead core (where the solution vanishes) of several nonlinear problems of eigenvalue type. 2000 Mathematics Subject Classification: 35J60, 35B52.

متن کامل

Orlicz Spaces and Nonlinear Elliptic Eigenvalue Problems

Nonlinear elliptic differential equations of order m acting in a space of m dimensions often occupy a special position in more general theories. In this paper we shall study one aspect of this situation. The nonlinear problem under consideration will be the variational approach to eigenvalue problems for nonlinear elliptic partial differential equations as developed by the author in [l], [2], [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2022

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-022-02015-4